APPENDIX A

TABLE of FRESH and SALT WATER DENSITY

(reprinted from 'Introduction to Naval Architecture' by Gillmer and Johnson, U.S. Naval Institute, 1982)

Values of Mass Density p for Fresh and Salt Water

Values adopted by the ITTC meeting in London, 1963. Salinity of salt water 3.5 percent.

			(
Density of fresh					
water ρ,		Density	Density		Density
lb-sec ² /ft ⁴	Temp,	of salt	of fresh	Temp,	of salt
(= slugs/	deg	water ρ_s ,	water ρ,	deg	water ρ_s ,
ft³)	F	lb-sec ² /ft ⁴	lb-sec ² /ft ⁴	F	lb-sec ² /ft ⁴
1.9399	32	1.9947	1.9384	59	1.9905
1.9399	33	1.9946	1.9383	60	1.9903
1.9400	34	1.9946	1.9381	61	1.9901
1.9400	35	1.9945	1.9379	62	1.9898
1.9401	36	1.9944	1.9377	63	1.9895
1.9401	. 37	1.9943	1.9375	64	1.9893
1.9401	38	1.9942	1.9373	65	1.9890
1.9401	39	1.9941	1.9371	66	1.9888
1.9401	40	1.9940	1.9369	67	1.9885
1.9401	41	1.9939	1.9367	68	1.9882
1.9401	42	1.9937	1.9365	69	1.9879
1.9401	43	1.9936	1.9362	70	1.9876
1.9400	44	1.9934	1.9360	71	1.9873
1.9400	45	1.9933	1.9358	72	1.9870
1.9399	46	1.9931	1.9355	73	1.9867
1.9398	47	1.9930	1.9352	74	1.9864
1.9398	48	1.9928	1.9350	75	1.9861
1.9397	49	1.9926	1.9347	76	1.9858
1.9396	50	1.9924	1.9344	77	1.9854
1.9395	51	1.9923	1.9342	78	1.9851
1.9394	52	1.9921	1.9339	79	1.9848
1.9393	53	1.9919	1.9336	80	1.9844
1.9392	54	1.9917	1.9333	81	1.9841
1.9390	55	1.9914	1.9330	82	1.9837
1.9389	56	1.9912	1.9327	83	1.9834
1.9387	57	1.9910	1.9324	84	1.9830
1.9386	58	1.9908	1.9321	85	1.9827
			1.9317	86	1.9823

NOTE: For other salinities, interpolate linearly.

APPENDIX B

TABLE of FRESH and SALT WATER KINEMATIC VISCOSITY

(reprinted from 'Introduction to Naval Architecture' by Gillmer and Johnson, U.S. Naval Institute, 1982)

Values of Kinematic Viscosity ν for Fresh and Salt Water

Values adopted by the ITTC meeting in London, 1963. Salinity of salt water 3.5 percent.

	Sa	miny of Sait w	ater 3.5 perce	:nt.		
Kinematic		Kinematic	Kinematic		Kinematic	
viscosity of		viscosity of	viscosity of		viscosity of	
fresh water	Temp,	salt water	fresh water	Temp,	salt water	
$\nu, \frac{\mathrm{ft}^2}{\mathrm{\sim}} \times 10^5$	deg	ft ²	ft ²	doa	f+2	
$\nu, {\text{sec}} \times 10^{5}$	F	$v_s, \frac{\mathrm{ft}^2}{\mathrm{sec}} \times 10^5$	$\nu, \frac{10^{5}}{\text{sec}} \times 10^{5}$	F	$\nu_s, \frac{10}{\sec} \times 10^s$	
1.9231	32	1.9681	1.2260	59	1.2791	
1.8871	33	1.9323	1.2083	60	1.2615	
1.8520	34	1.8974	1.1910	61	1.2443	
1.8180	35	1.8637	1.1741	62	1,2275	
1.7849	36	1.8309	1.1576	63	1.2111	
1.7527	37	1.7991	1.1415	64	1.1951	
1.7215	38	1.7682	1.1257	65	1.1794	
1.6911	39	1.7382	1.1103	66	1.1640	
1.6616	40	1.7091	1.0952	67	1.1489	
1.6329	41	1.6807	1.0804	- 68	1.1342	
1.6049	42	1.6532	1.0660	69	1.1198	
1.5777	43	1.6263	1.0519	70	1.1057	
1.5512	44	1.6002	1.0381	71	1.0918	
1.5254	45	1.5748	1.0245	72	1.0783	
1.5003	46	1.5501	1.0113	73	1.0650	
1.4759	47	1.5259	0.9984	74	1.0520	
1.4520	48	1.5024	0.9857	75	1.0392	
1.4288	49	1.4796	0.9733	76	1.0267	
1.4062	50	1.4572	0.9611	77	1.0145	
1.3841	51	1.4354	0.9492	78	1.0025	
1.3626	52	1.4142	0.9375	79	1.9907	
1.3416	53	1.3935	0.9261	80	0.9791	
1.3212	54	1.3732	0.9149	81	0.9678	
1.3012	55	1.3535	0.9039	82	0.9567	
1.2817	56	1.3343	0.8931	- 83	0.9457	
1.2627	57	1.3154	0.8826	84	0.9350	
1.2441	58	1.2970	0.8722	85	0.9245	
			0.8621	86	0.9142	

NOTE: For other salinities, interpolate linearly.